7th Grade: Week 6

April 27- May 1
Earthlings, Meet Venus
By Rachel Slivnick
2018

In this informational text, Rachel Slivnick describes one of the planets in our Solar System, Venus. As you read, take notes on Venus’ environment.

What are your neighbors like? Chances are you have some friendly neighbors, some quiet neighbors, and some people who live on your block that are downright weird and maybe even a little scary. Well, Earth also has neighbors — in fact, Earth has millions of stars, planets, moons, asteroids, and other planets as fellow residents in our galactic neighborhood. While we can’t stroll over to our celestial neighbors to say hello or borrow a cup of sugar, Earth does share a galaxy with seven other planets that rotate around the same sun.

Our galactic neighborhood has a lot of different personalities, from gas giants to freezing balls of ice. However, everyone in the solar system agrees — if you can’t take the heat, stay away from Venus. It’s the hottest and most deadly planet in the Milky Way, and it just happens to be our closest neighbor. Yikes!

Do You Want to Drop by and Say Hello?

Venus may be our next door neighbor, but a visit to Venus won’t be very pleasant for us Earthlings. First, it will take three to four months in a spaceship to fly the 23.7 million miles to Venus, so pack for a long trip. As you step out of your spaceship, you try to take a big gulp of fresh air... but no luck. The atmosphere of Venus is made almost entirely of carbon dioxide, which is deadly for humans to breathe. Once you've donned your spacesuit, don't expect a glass of water. There is no liquid on Venus, although scientists believe that for the first two billion years of the planet’s life Venus had liquid oceans. Any liquid on Venus has long since evaporated due to the extreme heat.

1. relating to a galaxy or galaxies, especially the Milky Way galaxy
2. positioned in or relating to the sky
3. Don (verb): to put on (an item of clothing)
Venus is the warmest planet in our solar system, with a surface temperature of 900 degrees Fahrenheit. To compare, your oven at home only reaches about 500 degrees Fahrenheit. Think about how it feels when you open a hot oven, with the burning air rushing out and heating up an entire room. Imagine an entire planet that feels that hot! Even if you could survive the heat, Venus isn’t the most beautiful place to hang out. The surface of the planet is hot, rocky, and bare. During your visit, you would spot hundreds of extinct volcanoes, along with omnipresent yellow clouds full of sulphuric acid. If you try to take a walk to see a volcano up close, you may find it very difficult to move. That’s because the carbon-dioxide atmosphere is so thick that walking on Venus would feel as if you were moving underwater. Furthermore, the atmospheric pressure on Venus is much higher than Earth’s — in fact, the pressure on your body on Venus would be the equivalent of diving over 3,000 feet into the ocean. If you plan on paying this neighbor a visit, make sure your spacesuit is thick enough to withstand the pressure!

The Most Popular Planet on the Block

Even though Venus isn’t the most hospitable planet in our solar system, it has certainly been a popular place to visit. Since 1962, over 40 spacecrafts have flown around Venus or landed on the surface. Scientists are interested in Venus not only because it is our closest neighbor but because it seems like Earth and Venus should have a lot in common; both planets are a similar size in both diameter and mass. However, as more and more kinds of spacecraft visit Venus, the differences between Earth and Venus are becoming more apparent.

The first successful mission to Venus was completed by NASA’s Mariner 2. Launched on August 8th, 1962, this brave visitor reached Venus in 110 days. In 1970, the Venera 7 actually landed on the surface of Venus and withstood the pressure and heat for about 50 minutes, sending data back to Earth before crumpling and burning up. In 1998, the Magellan spacecraft was launched. The goal? To create a map of Venus. Thanks to the Magellan, we know about the flat, volcanic surface of Venus. This year, the space probe Akatsuki is zooming around Venus, collecting information about the atmosphere of this inhospitable planet. The more we learn about Venus, the more we realize what an unfriendly planet it is.

Neighborhood Gossip: Venus in Human Culture

While Venus could earn the nickname of “most unwelcoming neighbor” due to its deadly air, crushing pressure, and lethal heat, this planet has always captivated humans. Why do we love a planet that would kill us within milliseconds of arriving? Simple — Venus is the brightest object in our sky besides the moon and sun. People looking up at night can always spot Venus burning brightly.

In fact, for thousands of years Venus was mistaken for a particularly bright star. Venus is named after the Roman goddess of love, beauty, and desire. Edgar Allan Poe and William Blake both wrote poetry about the “evening star,” which we now know refers to Venus. In the mid-twentieth century, people around the world were fascinated with space travel and the possibility of life beyond Earth. Ray Bradbury, the famous science fiction author, wrote two short stories imagining life on Venus: “All Summer In A Day” and “The Long Rain.” He was inspired by the clouds that cover 98% of Venus’s surface and wrote about a planet full of rain, plants, and creatures.

4. Omnipresent (adjective): common or widespread
5. Hospitable (adjective): welcoming or friendly to guests
Bradbury wasn't the only one optimistic⁶ about our closest planetary neighbor. Many thought that Venus — with a similar size and proximity to the sun as Earth — was the most likely of all planets to support life. Wouldn't it be great if our closest neighbor had friendly aliens for us to hang out with and a comfortable planet to host a sleepover on?

Unfortunately, Venus will never be the best friend next door. As we learn more and more about this planet, we have realized that the conditions on Venus cannot support life. Temperatures that are hot enough to melt lead, air that is poisonous to breathe, pressure that would turn our bodies into mush, and clouds full of acid means that our closest neighbor in the galaxy couldn't be more different from Earth.

"Earthlings, Meet Venus" by Rachel Silvnick. Copyright © 2018 by CommonLit, Inc. This text is licensed under CC BY-NC-SA 2.0.

⁶ Optimistic (adjective): hopeful and confident about something
Text-Dependent Questions

Directions: For the following questions, choose the best answer or respond in complete sentences.

1. PART A: Which statement best expresses the central idea of the text?
 A. Venus has captured many science fiction writers’ attention due to its bright appearance and inhospitable environment.
 B. Venus, the closest planet to Earth, has intrigued people despite its dangerous environment that could easily kill humans.
 C. While Venus’ temperature and pressure are harmful to life, scientists believe its distance from the sun could help promote life.
 D. Scientists believe that over time, Venus’ environment will change to be more similarly hospitable to Earth’s environment.

2. PART B: Which detail from the text best supports the answer to Part A?
 A. “There is no liquid on Venus, although scientists believe that for the first two billion years of the planet’s life Venus had liquid oceans.” (Paragraph 3)
 B. “In 1970, the Venera 7 actually landed on the surface of Venus and withstood the pressure and heat for about 50 minutes, sending data back to Earth before crumpling and burning up.” (Paragraph 6)
 C. “While Venus could earn the nickname of ‘most unwelcoming neighbor’ due to its deadly air, crushing pressure, and lethal heat, this planet has always captivated humans.” (Paragraph 7)
 D. “He was inspired by the clouds that cover 98% of Venus’s surface and wrote about a planet full of rain, plants, and creatures.” (Paragraph 8)

3. Which statement best describes the relationship between Earth and Venus?
 A. Earth and Venus have both gone through phases of being unable to support life.
 B. Earth and Venus exist close by each other and are of similar sizes.
 C. Earth and Venus both orbit the sun at the same rate.
 D. Earth and Venus have more in common than any other two planets.

4. Which statement best captures the author’s point of view on Venus?
 A. Venus is an interesting planet, but not one that humans will likely be able to visit any time soon.
 B. Venus is a mysterious planet that scientists have much more to learn about.
 C. Venus is an important planet to Earth that humans may be traveling to in the near future.
 D. Venus shouldn't interest as many people as it does, since it could easily kill anyone who visits.
5. How does Venus' atmosphere and temperature help us understand its environment? Use details from the text in your answer.
Discussion Questions

Directions: Brainstorm your answers to the following questions in the space provided. Be prepared to share your original ideas in a class discussion.

1. In the text, the author discusses how humans have always been interested in Venus. What is an object or event in space that interests you? Why?

2. How have scientists been able to learn about Venus, despite its dangerous environment? What other inhospitable places on — and beyond — Earth have scientists been able to study? What makes this possible?
All of the men were nervous as they waited. But Len Kleinrock was the most nervous. The year was 1969, and just over 20 people were crowded into the room. A group of pale men in their 20s and 30s, the computer scientists stood beside executives from big telephone companies. The men tapped their feet impatiently. They waited.

The computer itself loomed along the wall, 15 feet wide and 35 feet long. A long grey cable snaked from the computer to a smaller machine, the router or "switch," in the corner. The two machines were important, but the real reason the men had gathered was the activity happening in that long grey cable. They were about to see whether information could successfully flow between a computer and router, for the first time in history.

At the center of the group was Len Kleinrock, the 35-year-old star of computer networking. Kleinrock was a professor at UCLA and was the one who had engineered this system. "Everybody was ready to point the finger if it didn't work," said Kleinrock. "Happily, the bits began to flow from the host to router. I like to refer to that day as when the Internet took its first breath of life, first connected to the real world. It's like when a baby is born and has its first experience of the outside world."

For Kleinrock, that moment had been almost a decade in the making. He originally became interested in the problem of network connection while working on the East Coast. He recalled, "I looked around at MIT and Lincoln Laboratories [sic]: I was surrounded by computers and recognized that one day they're going to have to talk to each other. And it was clear that there was no adequate technology to allow that."

At the same time that Kleinrock was growing absorbed in the problems of network connection, the United States government was ramping up its investment in science and technology research. The Soviet Union's famous launch of a satellite called Sputnik had been an embarrassment for the United
States—the United States thought that it should be the leader of space travel. Eisenhower created a branch within the Department of Defense to ensure that the scientific leadership of America wouldn't be eclipsed again in the future. This new organization, the Advanced Research Projects Agency (ARPA), became one of the major engines of technological innovation throughout the 1960s and 1970s.

In 1962, while Kleinrock was finishing up graduate school, ARPA created a new department devoted to computer science. The head of this division was J.C.R. Licklider, a fellow scientist at MIT who also worked on network structures.

"He was one of those visionaries who foresaw the advantages of combining humans with computer," said Kleinrock of his former colleague and boss. "He created a concept called man-computer symbiosis, recognizing that if you put the two together, you could get very significant results." Licklider ran into political problems at ARPA and ultimately left to return to MIT, but not until he had planted the idea of networking as a concept worthy of funding.

Bob Taylor took over ARPA's computer science division in 1966 and reinvigorated the project. Taylor had been funding different projects in computer science departments at universities across the country and realized it was growing too costly to give each department the machines and resources to do every task. What he needed was a way for geographically far-flung research centers to somehow share each other's computing resources. Taylor needed to create a network. The man he brought in to build it, Larry Roberts, happened to be Kleinrock's old officemate at MIT.

"We were all intimately familiar with each other's work, so when they asked, Roberts said, 'Look, I know exactly what this technology should be, and I know it can work. Len Kleinrock has already proven it,'" recalled Kleinrock. "And bang, the project came to life. After a number of years, it came to action."

And so it was that all of the men were crowded into the room watching a long grey cable. An air conditioner hummed in the background, fighting against both the heat outside and the heat generated by the massive machine in the room. Cheers broke out when they saw that the information was flowing, but the real test was to come a few weeks later.

The first message between two computers was sent on October 29, 1969. This time the room was empty, except for Kleinrock and one other engineer. They didn't know that it was such an important milestone, so there was no camera or tape recorder. The two men were trying to log onto a computer at the Stanford Research Institute and successfully got through two letters of the message "login" before the system crashed.

"It was not until this thing called the Internet hit the consumer world that we recognized this network was really important. At that point we looked back and said, 'What was the first message ever sent on the Internet?'" Kleinrock remembered. "Samuel Morse sent, 'What hath God wrought?'" Alexander Graham Bell said, 'Come here Watson I need you.' Neil Armstrong had his giant leap. These guys were smart and they understood media. We had no such concept, but the message we created, 'Lo,' [short for 'login'] that's the most prophetic, succinct, powerful message we could have come up with by accident."
Use the article "The Origins of the Internet" to answer questions 1 to 2.

1. This article is mainly about how the Internet began. Where in the article is the word "Internet" first used? Quote the sentence where it first appears.

2. Why might the author have avoided using the term "Internet" sooner in the article? Support your answer with evidence from the text.

Use the article "A Bad Robot" to answer questions 3 to 4.

3. This story is mainly about a bad robot. Where in the story is the bad robot first mentioned? Be as specific as possible in your answer.

4. Why might the author have mentioned EARL to the reader right away? Support your answer with evidence from the text.

Use the articles "A Bad Robot" and "The Origins of the Internet" to answer questions 5 to 7.

5. Compare where in the text the two authors first mention what their article or story is mainly about.

6. Contrast where in the text the two authors first mention what their article or story is mainly about.

7. How might an author determine where in a text to first mention what that text is mainly about? Support your answer with evidence from both texts.
Thursday, March 26th

Find the area of polygons.

Rectangle
\[A = b \times h \]

Triangle
\[A = \frac{1}{2} \times bh \]

Find the area of each piece and add them together.
Scale Drawings

1. A model shark is 5 inches long. The scale for the actual length of a shark is 2 in: 1 ft. What is the actual length of the shark?

2. The scale of a model car is 1:18 in inches. The length of the model is 9 1/2 inches. How many feet long is the actual car?

3. Day makes a scale drawing of the kitchen floor to determine how many square feet of flooring he needs to buy. The scale of his drawing is 1 in: 4 feet.

What is the actual area of Day's kitchen?

4 1/2 in
Practice Problems - Volume

Find the volume of each shape.

1. 7in
 9in

2. 8ft
 15ft
 4ft

3. 12cm
 8cm
 2cm

4. 9m
 9m

5. 6cm
 6cm
 15cm

6. 12cm
 11cm
 5cm
The Rise of Oxygen in the Earth's Atmosphere
by American Museum of Natural History
This article is provided courtesy of the American Museum of Natural History.

On a chilly October afternoon, Grant Young and Jay Kaufman stand along a busy roadside in northern Ontario, poring over their favorite Earth-history book. Young, a professor of geology at the University of Western Ontario, and Kaufman, a geoscientist from the University of Maryland, are among the leading scientists trying to attach firm dates to the rise of oxygen in Earth's early atmosphere - an event that, when it occurred more than 2 billion years ago, dramatically altered the planet's development.

The book they are reading is an ancient geological masterpiece: the Huronian Supergroup, a massive formation of rock laid down gradually between about 2.5 billion and 2.2 billion years ago, precisely the period when oxygen began to accumulate in the atmosphere. The Huronian Supergroup is 10 or 11 kilometers (six or seven miles) thick and extends well below ground. From atop a nearby outcrop, a viewer can survey the landscape for miles around. At the moment, however, Kaufman and Young are at road level, examining a segment of the outcrop that was exposed back when the highway was built. Individual layers of ancient sediment form horizontal stripes on the rock. From a few steps back, the rock wall looks like a cross-section of a giant, stone encyclopedia.

"When we look at a sequence of rocks, it's like the pages of a book," Young says. "The page at the bottom is the oldest and the page at the top is the youngest. We read history by starting at the bottom layer and working our way up. The Huronian Supergroup is particularly exciting and interesting because, by chance, these rocks were laid down at a period when the atmosphere underwent a transition from containing no free oxygen to containing at least some free oxygen."

It may seem at first like an odd strategy: studying rocks in order to understand the atmosphere. It's one thing to examine fossils, the solid remains of ancient, solid creatures. But what can rocks reveal about something as formless as air, much less air that existed billions of years ago? How does one study the ancient atmosphere when no samples of it are left to collect?

Fortunately, the geological record contains a history of more than just rock. The atmosphere, then as now, constantly interacts with Earth's crust. As exposed rock weathers, its composition is altered by compounds in the air. This alteration is apparent even billions of years later and reveals important details about the atmosphere at the time. By studying a shoeprint in the mud, a police detective can determine not only the kind of shoe that made it, but also critical details about its wearer: size, weight, gender, even age, and whether or not he or she walked with a limp. The ancient atmosphere left an equally telling signature in the rock record. By flipping backward through pages of rock, a geologist can begin to form a picture of that atmosphere and how it changed through time.
"I've often wished that I had a time machine to go back and collect a sample of ancient atmosphere or an ancient bit of seawater," says Kaufman. "But we can't. All we can do is collect rocks that were formed under those waters and under that atmosphere."

Oxygen is a highly reactive element; it readily combines with other elements to form new compounds. As these compounds form, they become part of the geological record, leaving behind a trail of molecular "crumbs" that point to oxygen's whereabouts through history. One clue to the nature of the ancient atmosphere comes from rock formation known as "redbeds," the oldest of which date back about 2.2 billion years. Redbeds are sediments that were deposited on floodplains by water exposed to the atmosphere. They contain a mineral called hematite, a compound of iron and what must have been atmospheric oxygen. After 2.2 billion years ago, redbeds become increasingly common in the geological record.

"It's a very simple kind of test," says Young, who has studied redbeds extensively over the course of his career. "But it does give us at least a first-order idea as to whether there was free oxygen and whether there wasn't."

In recent years Kaufman's colleague James Farquhar, a geochemist at the University of Maryland, devised an even more precise method of dating the rise of oxygen. He collected rocks from the Huronian Supergroup and other deposits around the world, ground them to powder in the laboratory, and studied them for traces, not of oxygen, but of an entirely different element: sulfur. Sulfur compounds are emitted in vast quantities by volcanoes, which were especially active during Earth's youth. Like other airborne compounds, they undergo reactions in the atmosphere and eventually end up deposited in the geological record.

As it happens, there are four different kinds, or isotopes, of sulfur. By far the most common - about 95 percent of all atmospheric sulfur - is sulfur-32, or sulfur with an atomic weight of 32. The other isotopes are sulfur-34 (4.2 percent), sulfur-33 (0.75 percent), and sulfur-36 (0.02 percent). The relative proportion of these four isotopes has tended to remain steady over time. But Farquhar and his colleagues found that in rocks older than about 2.4 billion years, the proportion of sulfur-33 varied widely, whereas rocks younger than about 2.1 billion years showed no significant variation. What accounted for the variation, and for the change?

The answer, Farquhar and Kaufman believe, was oxygen. Early in the planet's history, before enough free oxygen had accumulated to form a protective layer of ozone (O3), Earth's atmosphere was scorched by intense ultraviolet radiation from the Sun. The UV radiation may have reacted with the atmosphere to produce some compounds with a high sulfur-33 to sulfur-32 ratio and other compounds with a low sulfur-33 to sulfur-32 ratio. Later, with the rise of oxygen and the formation of an ozone layer which blocked incoming UV radiation, that photochemical reaction stopped, and the ratio of sulfur-33 to sulfur-32 ceased to vary. Amazingly, these signatures of sulfur isotopes are recorded in the rocks. In old rocks, before the buildup of atmospheric oxygen, the ratio of sulfur-33 to sulfur-32 in rocks is variable; in young rocks it is constant and in the same ratio as today.
Farquhar's technique, though indirect, is remarkably exact: he has determined that free oxygen began to accumulate in the atmosphere about 2.45 billion years ago and was well established by 2.1 billion years ago. He also has been able, for the first time, to provide a rough measure of how much oxygen there was compared to today. "The sulfur research probably provides the strongest evidence for the buildup of oxygen in the atmosphere," Farquhar says. "The change from a large signature to a much smaller signature is a result of a large change in atmospheric oxygen content, from levels 100,000 times less than present to levels within about 100 times less than the present level."

"The most exciting thing to me about this research is that it quantifies amounts of oxygen in the atmosphere," Kaufman adds. "Before, we just had this qualitative sense of, well, it was low here, it must have risen here. But the signatures that we're seeing allow us to actually get at numbers - to get at the timing of this rise, so it's not just a fairytale. We can actually write some sentences on the pages of the book of atmospheric oxygen."
1. Why is the Huronian Supergroup rock formation particularly interesting to scientists?
 A. because it looks like a cross-section of a giant, stone encyclopedia
 B. because it formed during the period when oxygen began to accumulate in the atmosphere
 C. because it contains unusually large amounts of oxygen and sulfur
 D. because it dramatically altered the planet’s development when it first formed

2. In this article the author explains what scientists are trying to find out. What are the scientists in the article trying to find out?
 A. how the proportions of different sulfur isotopes change in the geologic record
 B. when oxygen increased in Earth’s early atmosphere
 C. when sulfur first appeared in Earth’s early atmosphere
 D. how the ozone layer formed and the effects of its formation

3. Read these sentences from the article.

"I've often wished that I had a time machine to go back and collect a sample of ancient atmosphere or an ancient bit of seawater," says [Jay] Kaufman. "But we can't. All we can do is collect rocks that were formed under those waters and under that atmosphere."

Which conclusion does this statement support?
 A. Scientists are skeptical about their ability to determine when oxygen levels in the Earth's early atmosphere rose.
 B. Scientists are unable to study what the Earth was like millions of years ago because they do not have the materials needed to do so.
 C. Scientists study the atmosphere in order to learn what the Earth's seawater was like millions of years ago.
 D. Scientists study rock formations in order to learn what Earth's atmosphere was like millions of years ago.
4. Read these sentences from the article.

"Individual layers of ancient sediment form horizontal stripes on the rock. From a few steps back, the rock wall looks like a cross-section of a giant, stone encyclopedia."

Why might the author have included this description of the rock wall?

A. to explain why the author quotes scientists in the article
B. to demonstrate why the author explains two different methods used to date the rise of oxygen in the atmosphere
C. to show why the author presents information about different compounds in the article
D. to clarify why the author compares studying a rock formation to studying a book

5. What is the main idea of this article?

A. Scientists learn about sulfur by studying ancient rocks.
B. Scientists learn about the history of oxygen in Earth's atmosphere by studying rocks.
C. Scientists learn about redbeds by studying the history of Earth's atmosphere.
D. Scientists learn about the history of sulfur in Earth's atmosphere by studying oxygen.

6. The author asks these questions in the article.

"But what can rocks reveal about something as formless as air, much less air that existed billions of years ago? How does one study the ancient atmosphere when no samples of it are left to collect?"

Why might the author ask these questions? Consider both the questions themselves and their context in the article.

A. to get the reader thinking about something that will be explained later in the text
B. to force the reader to come up with ways to study the ancient atmosphere without collecting samples
C. to invite the reader to learn more about the questions scientists ask themselves
D. to suggest to the reader that it's impossible to learn about the ancient atmosphere using today's rocks
7. Read this sentence from the article.

"As exposed rock weathers, its composition is altered by compounds in the air."

Which of the following words could replace "its" without changing the meaning of the sentence?

A. the rock's
B. the weather's
C. the Earth's
D. the compounds'

8. In order to determine when oxygen levels increased in the Earth's atmosphere, which element did James Farquhar and his team search for in rocks?

9. Jay Kaufman said that while scientists cannot collect and study samples of the ancient atmosphere, they can "collect rocks that were formed... under that atmosphere." Why are scientists able to learn about the ancient atmosphere by studying the rocks that came into contact with the ancient atmosphere?

10. Explain what scientists might be able to learn about the seawater that existed millions of years ago by studying rocks that came into contact with seawater at that time in the past. Use evidence from the text to support your inference.
A famous legend tells how ancient Rome was founded. It begins with twin brothers named Romulus and Remus. The two baby boys were set afloat in the Tiber River in a wicker basket. A female wolf took the babies under her care and saved their lives. She raised them as wolves. Eventually, a shepherd found the boys. He adopted the twins and raised them into young men.

As young men, Romulus and Remus took revenge on the person who had ordered that they be abandoned at birth. That person was the king of the land. They killed him. Then they founded a new city. The new city was built on seven hills. Unfortunately, Remus did not live to see the city's completion. He was killed by his own twin brother! The two had fought terribly when they tried to share the land. The city was named Rome after Romulus, its first king.

Rome soon became a great and powerful city. However, Romans never forgot how their city began. Today, their wolf mother is still a symbol of this famous Italian capital.
1. According to the text, what were Romulus and Remus saved by when they were babies?
 A. a bear
 B. a wolf
 C. a woman
 D. a goddess

2. How does the author tell the story of Romulus and Remus?
 A. by giving two different versions of the story
 B. by presenting first the historical facts and then the legend
 C. in the order of events in the legend
 D. in reverse order from present day to the past

3. Romulus and Remus both wanted to control Rome on their own.
 What evidence from the text supports this conclusion?
 A. "Rome soon became a great and powerful city. However, Romans never forgot how their city began. Today, their wolf mother is still a symbol of this famous Italian capital."
 B. "A famous legend tells how ancient Rome was founded. It begins with twin brothers named Romulus and Remus. The two baby boys were set afloat in the Tiber River in a wicker basket."
 C. "As young men, Romulus and Remus took revenge on the person who had ordered that they be abandoned at birth. That person was the king of the land. They killed him."
 D. "Unfortunately, Remus did not live to see the city's completion. He was killed by his own twin brother! The two had fought terribly when they tried to share the land."

4. Based on the text, why is the wolf mother a good symbol for Rome?
 A. She helped raise Romulus and Remus, who founded the city.
 B. She caused the fight between Romulus and Remus.
 C. She led Romulus and Remus to the city of Rome.
 D. Romulus and Remus filled the city of Rome with packs of wolves.
5. What is this text mostly about?
 A. how the ancient Romans created myths
 B. why humans and wolves do not get along
 C. the legend of how Rome was founded
 D. how Rome created its first government

6. Read this sentence from the text.
 The two baby boys were set afloat in the Tiber River in a wicker basket.

As used in the sentence, what does the word "afloat" mean?
 A. thrown over something
 B. on the surface of water
 C. set on fire
 D. sinking in water

7. Choose the answer that best completes the sentence.
 Romulus and Remus founded a new city, __________ Remus was killed by Romulus before the city's completion.
 A. so
 B. because
 C. but
 D. after

8. According to the text, why was the city named Rome?

9. A legend is a story that is not necessarily true. Why is it likely that the story is not entirely true? Use evidence from the text to support your answer.